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Abstract

Reshuffling elements of a multidimensional array according to an index operation
traditionally requires an auxiliary buffer of the same size as the original array. Here we
describe a new in-place algorithm using vacancy tracking cycles with minimum memory
access, which eliminates the buffer array and the related copy-back, therefore speeding
up the reshuffle significantly for large arrays. The algorithm can be parallelized using a
multi-thread approach on shared-memory multi-processor computers. On distributed-
memory multi-processor computers, index reshuffle of distributed multidimensional
arrays amounts to a remapping of processor domains and is carried out using the in-
place local algorithm combined with a global exchange algorithm. Implementation and

test results on CRAY T3E and IBM SP indicate the effectiveness of the algorithm.

Keywords: multidimensional arrays, index reshuffle, vacancy tracking cycles, global ex-

change, dynamical remapping.



1 Introduction

Dynamically remapping problem domains on distributed-memory multi-processor architec-
tures are encountered frequently in many scientific and engineering applications. Instead
of fixing the problem decomposition during entire computation, dynamically remapping the
problem domains to suit the specific needs at different stages of the computation can often
simplify computational tasks significantly, saving coding efforts and reducing total problem

solution time.

An example is shown in Figure 1. The 3D fields of an atmosphere (or ocean) model
are mapped onto 8 processors, with horizontal dimensions split among the processors. In
spectral transform based models, such as the CCM atmospheric model[l, 2] and the shallow
water equation[3], one often needs to dynamically remap between the height-local domain
decomposition and the longitude-local decomposition for tasks of distinct nature. In grid-
based atmosphere and ocean models, similar remappings are needed for polar filtering[4] and

for data input/output[5].

An important aspect of the multidimensional array remapping problem is the memory
usage. This becomes a pressing issue because increasingly larger problems are being solved
on today’s highly parallel systems with ever increasing computing power. In climate simu-
lations, doubling the model resolution typically requires a factor of 8 increase of array sizes.
Traditional implementation of 3D array remapping requires an auxiliary buffer array of the
same size as the original data array, to hold the temporary data during the remapping. [A
simple example is exchange the two indexes of a 2D array A(N;, Nz).] This puts a severe

limitation on such memory-bound problems.

In this paper, we first introduce a vacancy tracking method for multidimensional array
index reshuffle in local memory (i.e., reshuffling array elements in a way that corresponds to
certain index operation, see section 2). The method reshuffles elements within the original
array according to vacancy tracking cycles, and eliminates the need for the auxiliary array. It
therefore (1) reduces the memory requirements by half; (ii) eliminates the copy-back process
in traditional methods, i.e., copying the reshuffled data from the auxiliary array back to the
original array, thus speeds up the index reshuffle substantially. In fact, the vacancy tracking
algorithm reduces the total number of memory access to the absolute minimum possible —

it is an optimal algorithm. (Section 2).

The vacancy tracking algorithm for multidimensional array can be parallelized on shared-
memory or symmetric multi-processor (SMP) architectures with a multi-thread approach,

making use of the independence of vacancy tracking cycles. (Section 3).

For distributed memory multi-processor (DMP) architectures, the local vacancy tracking

algorithm is combined with a global all-to-all exchange method, leading to a global in-place
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Figure 1: Dynamical remapping of 3D atmosphere/ocean models. In height-local domain de-
composition, all data points along vertical dimension are on the same processor. In longitude-

local decomposition, all points along a longitude are on the same processor.

multi-dimensional array remapping algorithm. This provides a solution to the memory usage

issue for dynamical remapping. Implementation details are discussed (section 4).

The method and specific algorithms represented here are implemented on distributed
memory computers Cray/SGI T3E and IBM SP with MPI message passing library. The
performance and analysis are presented for sequential cases (single processor) in section 2
and for multi-processor cases in section 4. Issues with cache usage and scaling to large

number of processors are also discussed. Some concluding remarks are made in section 5.

To our knowledge, this paper is the first study of an in-place index reshuffle algorithm for
multi-dimensional arrays with arbitrary dimension sizes. For one-dimensional arrays when
the size is a power of 2, a study of index permutations has been discussed by Fraser [6]. For

more index reshuffle related studies, see Ref.[7] and references there.

2 Index reshuffle using a vacancy tracking algorithm

In many computational problems, we are interested in re-arranging the order of a multi-
dimensional array, i.e., reshuffling array elements, in such a way that corresponds to array
index operations, such as exchanging two indices. Here we focus on index reshuffles on

3-dimensional (3D) arrays, but the algorithm can be easily extended to higher dimensions.

Given a 3D array A with dimensions Ny, Ny, N3 indexed as A(ky, k2, k3), we consider the
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reshuffle with index exchange between k; and k3. Using an auxiliary buffer array B of equal

size, the index exchange between ky; and k3 can be easily carried out as follows:

do k3 =1, N3
do k2 =1, N2
do k1 =1, N1
B(k1,k3,k2) = A(k1,k2,k3) (c.1)
end do
end do
end do

We denote this index reshuffle of A and storing the results in B as:
Blki, ks, ko] <= Ak, k2, ks). (1)

In many situations, B is copied back to memory locations of A (denoted as A < B ), and
memory for B is freed. We will call this traditional method the two-array reshuffle method,
because of the need of the auxiliary array B. Combining the Blkq, ks, ko] < Alks, ko, ks3]
reshuffle phase and the copy-back A < B phase, the net effect of the two-array reshuffle

method can be written symbolically as
A'lky, k3, ko] < Alky, kg, ks3] (2)

Here A’ indicates that reshuffled results are stored at the same location as the original array
A. Intuitively one may interpret 3D array A’[kq, k3, k2] as having the 1st array index &y as
the fastest running index in storage, the 3rd array index ks as 2nd fastest running index in
storage, and the 2nd index ky as the slowest running index in storage (here we follow Fortran

storage convention).

Clearly, index reshuffles corresponding to exchanging ky and k3 indexes also occur fre-

quently. This can be denoted as,
A'lks, kg, k1] <= Alky, ka, k3] (3)

The code segment implementing this reshuffle is very similar to (C.1).

Reshuffles with three-index exchanges also occur. They can be considered as successive
reshuffles with two-index exchanges. For example, a reshuffle with left-circular-shift of all

three indexes,

Allky, ks, k1] <= Alky, ey, ) (4)

is the combined effect of two-index reshuffles of Eqs.(2, 3). In actual implementations, three-

index reshuffles are carried in one step, just as two-index reshuffles are.
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In many situations, the array is very large and there is not enough memory to store the
auxiliary array B to perform the above mentioned index exchanges. In these situations, we
need an in-place method, i.e., the index reshuffle must be carried out using A’s memory
space only. The main contribution of this paper is to introduce a new in-place algorithm for
this reshuffle. Furthermore, with the elimination of the auxiliary array, the copy-back phase
is eliminated too; thus the in-place algorithm speeds up the reshuffle by nearly a factor of 2

(see performance analysis in section 2.4).

As is well-known, in the special case of two-index exchanges and when the dimensions
of the two indices are the same, a simple in-place exchange algorithm can be used which
is essentially the transposition of a square matrix; we need only a temporary buffer to
hold a single array element. However, in most applications dimension sizes are not equal.
Furthermore, in parallel remapping, even if the global array dimensions have same sizes,
local subdomain arrays have different dimension sizes due to the decomposition. An in-place

algorithm for arbitrary sizes and dimensions is necessary.

2.1 Vacancy tracking cycles

The key idea of this in-place algorithm is to view the index reshuffle as a mapping from
original memory locations to new target memory locations and to move elements from old
locations to new locations in a specific memory-saving order. In doing so, closed loops of

vacancy tracking cycles are generated.

We start with a very simple example of a two-index exchange. Consider a 2D array A
with dimension sizes 3 and 2, denoted as A(3,2) as in Fortran. The six elements of A(3,2) are
labeled as Ag, A1, Ay, Az, A4, As, as they are stored in the six consecutive memory locations
Lo, L1, Ly, L3, Ly, Ls, in the original array (indicated as the left-most diagram in Figure 2).
The task of index reshuffle here is to reshuffle elements to the order indicated as the right-
most diagram in Figure 2. Each element has a starting location before the reshuffle and a
target location after the reshuffle. Our task is to move them from starting locations to target

locations in minimal steps with only one temporary buffer tmp space.

Consider Ay. A; should be in Ly after the reshuffle. We move A; to the buffer tmp and
Ly is a vacancy now. Who should go to L; after the reshuffle? A3 does, we move Aj to fill
the vacancy Li. Lz is the vacancy now. Who should go to L37 A4 does, we move Ay to Ls.
Now L, is the vacancy. After moving Ay to L, to fill the vacancy, Lo is the vacancy. Ay
should go to L,, thus we come back to A; where we started. A; has been moved to tmp at
the beginning of the cycle, and we move A; from tmp to Ly. The cycle is closed. We see
that this vacancy tracking algorithm naturally leads to the following closed length-4 vacancy

tracking cycle:
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Figure 2: Permutations of elements in 2D array A(3,2). These moves follow the 1 - 3 - 4 - 2

- 1 vacancy tracking cycle.
1-3-4-2-1

These moves are schematically indicated in Figure 2. It is important to note that no addi-
tional memory space is needed to carry out this length-4 cycle. In this algorithm, element
Ag is never touched, and we denoted this fact as length-1 cycle 0 - 0. Similarly, A5 is never
touched; we have cycle 5 - 5. Including length-1 cycles, we say that every element belongs to
a vacancy tracking cycle. One can also see that the number of memory accesses is the mini-
mum possible: 4 elements are moved into 4 new locations in 4 reads and 4 writes (assuming

tmp is a register).

Using the same method, one can also complete the index exchange of 2D array A(4,2)

by following the two length-4 cycles:

1-4-2-1
3-5-6-3

as can be verified by visual inspection. There are two length-1 cycles: 0 - 0 and 7 - 7. For
2D arrays with equal dimension sizes, this algorithm will generate cycles with length-1 (for
diagonal elements) and length-2 (for non-diagonal elements) only, reducing to the traditional
pair-wise exchange algorithm mentioned earlier. (From now on, we will neglect all length-1
cycles to simplify the discussion, since elements involved in these cycles are never touched

in our algorithm.)

Higher dimensional arrays can be dealt in the same way. Consider a 3D array A(3,2,2)
with dimensions 3, 2, 2. An in-place index-exchange between 1st and 3rd indices, denoted

as Eq.3, can be achieved by the following vacancy tracking cycles:

1-6-4-1
2-3-9-8-2



5-7-10 -5

For the same 3D array, the in-place three-index left-circular-shift reshuffle as denoted in

Eq.4, can be achieved using the following two cycles:

1-3-9-5-4-1
2-6-7-10-8 -2

For a 3D array A(4,3,2) with 24 elements, the three-index left-circular-shift reshuffle can be
achieved by the following two cycles:

1-4-16-18-3-12-2-8-9-13-6 -1
5-20-11-21-15-14 - 10 - 17 - 22 - 19 - 7 - 5

2.2 Implementation

Clearly, these vacancy tracking cycles must be automatically generated. Here we give an
implementation for the in-place index reshuffle of a multi-dimensional array. For presentation
purposes, the algorithm is written as if it is dealing with a 2D array A(Ny, N3). For 3D or
higher dimensional arrays, the necessary modifications are also illustrated. The following

psuedo-Fortran code segment outlines the procedure.

! For 2D array A, viewed as A(N1,N2) at input and as A(N2,N1) at output.
! Starting with (i1,i2), find vacancy tracking cycle
ioffset_start = index_to_offset(N1,N2,11,12)
ijoffset_next = -1
tmp = A(ioffset_start)
ijoffset = i1offset_start
do while( ioffset_next .NOT_EQUAL. ioffset_start) (C.2)
call offset_to_index(ioffset,N2,N1,j1,j2) ! N1,N2 exchanged
ioffset_next = index_to_offset(N1,N2,j2,j1)! j1,j2 exchanged
if(ioffset .NOT_EQUAL. ioffset_next) then
A(ioffset) = A(ioffset_next)
ijoffset = ioffset_next
end if
end_do_while

A(ioffset_next) = tmp



Here the function index_to_offset(N1,N2,11,i2) returns the offset from the base of
the array in memory space, given input indices (i1, 12) and sizes N, Ny. Subroutine
offset_to_index(ioffset,N1,N2,j1,j2) computes indices (j1,j2) given the offset and
array dimension sizes. (Here ioffset, and indices i,j are all zero-based). Note also that
array A is indexed by the offset, independent of whether is declared as A(N1,N2) at input or
declared as A(N2,N1) at output — A is best viewed as a pointer. If explicit dimension dec-
laration is needed, one can declare two arrays, A(N1,N2) and B(N2,N1) and use equivalence
or same common block in Fortran 77, reshape in Fortran 90, or union in C to indicate they

occupy the same memory location.

Here is a brief description of the code segment. The vacated location, index by (11,12) in
the original A(Ny, N3) array, has the ioffset as returned by index_to_offset (N1,N2,11,12).
The same location identified by ioffset is then interpreted as a target location in the reshuf-
fled array A’( Ny, N1) with index (j1,32),as computed in offset_to_index(ioffset ,N2,N1,j1,j2)
[note the exchange of N1 with N2 here]. Index reshuffle requires that the element with in-
dices (j1,3j2) in the original array be moved to this location. That element has an offset,
ioffset_next, and is calculated by index_to_offset(N1,N2,j1,3j2). Once the content at
location ioffset_next is moved to location ioffset, the vacated location is now indicated
by ioffset = ioffset_next. The process is repeated until the vacated location come back
to where it started (ioffset_start), and the content in tmp is moved back to the last

vacated location.

The index routines can be easily implemented given an array storage scheme. For the

conventional Fortran linear storage scheme, for 2D arrays,

function index_to_offset(N1,N2,11,12)
return (il + i2%N1).

subroutine offset_to_index(ioffset,N1,N2,j1,j2)
return {j2 = ioffset/N1, ji1 = MOD(ioffset,N1)}

For 3D arrays, say A(Ni, Ny, N3), the above code segment remains unchanged, except
(i1,12) are replaced by (i1,12,13), and (Ny, Ny) are replaced by (Ni, N2, N3). The in-

dexing conversion routines are implemented as

function index_to_offset(N1,N2,N3,11,12,13)
return (il + i2%N1 + i3%N2*N1).
subroutine offset_to_index(ioffset,N1,N2,N3,j1,32,j3)

return {j3 = ioffset/(N1*N2),
j2 = (ioffset-j3*N1N2)/N1,
j1 = MOD(ioffset,N1)}



For a reshuffle corresponding to the 1st and 3rd index exchange, A'[ks, ko, k1] < Alkq, ka2, k3],

the code lines containing offset_to_index() and index_to_offset() should be replaced

by

call offset_to_index(ioffset,N3,N2,N1,j1,j2,j3) ! N1,N3 exchanged
ioffset_next = index_to_offset(N1,N2,N3,j3,j2,j1)! j1,j3 exchanged

For three-index left-circular-shift reshuffle, A'[kq, ks, k1] < Alkq, ko, k3], they should be re-
placed by

call offset_to_index(ioffset,N2,N3,N1,j1,j2,j3) ! N1,N2,N3 left-shift
ioffset_next = index_to_offset(N1,N2,N3,33,j1,32)! j1,j2,j3 right-shift

Note here that the indices (j1,3j2,33) are right-shifted, not left-shifted, to find the element

in the original array.

One can easily implement this code and use it to generate vacancy tracking cycles for
various cases, including those listed in section 2. When this algorithm is applied to 2D
arrays with Ny = Ny, it will produce exactly those length-2 cycles as in the standard square
matrix transposition, except that the diagonal elements (length-1 cycles) are not touched as
they should not be. When applied to 3D arrays with N; = Ny = Nj for a three-index shift
reshuffle, it will generate only length-3 cycles as expected. This algorithm is far more efficient

than the intuitive method of two consecutive two-index exchanges as discussed earlier.

The correctness of this algorithm depends on that the do while loop always lead to closed
vacancy tracking cycles, and that the cycles are non-overlapping, i.e., every array element
is moved and each moves only once. This can be easily proved based on the following two
facts: (a) the uniqueness of the index-offset relationship (results of index_to_offset () and
offset_to_index() are unique); and (b) the number of array elements is finite; so does the
number of distinct offsets. As a cycle proceeds according to the do while loop, ioffset
can only touch offset values it had not touched before, until it reaches the starting value
again and completes the cycle. Two different cycles can not partially overlap, i.e., share one
or more common offset values, which would contradict the uniqueness of the index-offset

relationship; they are either completely non-overlapping or entirely identical.

There are a number of ways to use the basic cycle generation algorithm of C.2. One
can generate vacancy tracking cycles and move the data items on the fly as in C.2. In the
simplest implementation, a bit array of size of total elements is needed to indicate whether

the memory location is touched or not.

A better implementation would be to pre-calculate the cycles” information before actually

moving data items. Starting offsets and cycle lengths for each cycle are stored in a cycle



table with the number of table entries equal to the total number of cycles. An outer do loop
over the code segment C.2 then does one single actual cycle after another to move the data

items in an orderly way, using the cycle information stored in the cycle table.

This saves the small overhead time over the repeated dynamical remappings during the
course of a computation task, and has a number of other advantages: (a) diagnostics —
we have a record of exact reshuffle moves; (b) facilitates inverse reshuffle or remapping; (c)
helps parallelization on SMP architectures; (d) remove requirement for the bit array when
generating the cycle information by using a few integers to keep track of the next untouched

locations. (e) further speedup data movements by also storing the cycle offsets.

Inverse indexing reshuffle refers to restoring the 3D array from a reshuffled index order
back to the original index order. It can be handled in the identical way as a forward
reshuffle. Suppose we had shuffled A(Ny, N3, N3) to A’(N3, Ny, N1) with two-index exchange.
To reshuffle back, one can invoke the identical reshuffle codes on A’, but with dimensions
(N3, N3, Nq), instead of dimensions (N1, N3, N3) in the forward reshuffle. Notice that in
the inverse reshuffle, the same vacancy tracking cycles will be generated as in the forward
reshuffle, except that the cycle traversal direction is reversed. Therefore, if the cycles in the
forward shuffle are pre-calculated and stored, the inverse reshuffle can make use of it, instead

of generating them anew.

We note that the larger the element size is, the less the number of moves for a fixed
number of total array size, and the more effective the method. In the climate modeling
application, all elements in a dimension [k1 dimension in code segment (C.1)] are collapsed
into one element and are moved together in a single step. Thus the number of elements
that appear in vacancy tracking cycles are Ny * N3, much less than the size of the total data
array Ny * Ny % N3. Using short integers (4-byte), the size of the table that stores the cycle
information therefore is about 4 * Ny x N3 bytes. Of course, if memory is extremely tight,
one can generate the cycles on the fly, eliminate this storage completely. The bit array of
Ny % N3/8 bytes is required in our present implementation, which could be eliminated with

a more sophisticated method to account for the untouched locations.

The new vacancy tracking method introduced here for multi-dimensional array index
reshuffle is quite generic. It can be usefully applied when storage capacity and access are
major concerns, such as re-arranging large relational tables in a relational database system.

There, the table re-arrangement can be done in-place, with tmp being a memory cache.

2.3 Memory access

The in-place array reshuffle algorithm reduces the total number of memory accesses in two

important ways. First, the copy-back phase in the traditional reshuffle method is eliminated,

10



therefore reducing memory access by half.

Second, in moving elements from starting locations to target locations, the vacancy track-
ing cycle algorithm uses the minimum number of memory accesses possible. In the example
of reshuffle of A(3,2) (cf Figure 1), a total of 4 elements are moved to new locations with
4 reads and 4 writes (assuming tmp is on register or cache). For these two reasons, our

in-place algorithm is an optimal one regarding memory access.

Equivalently, we can count memory access in the following way. The length-4 cycle in-
volves 3 memory-to-memory copies, one memory-to-tmp copy and one tmp-to-memory copy.
If we assume the tmp storage is a register or cache, the access time will be negligible compared
to access to DRAM. For counting memory access purposes, we can combine the memory-
to-tmp copy and tmp-to-memory copy as one memory-to-memory copy. Thus the length-4

cycle requires a total of 4 memory-to-memory copies.

In contrast, the two-array B < A reshuffle phase (C.1) requires 6 memory-to-memory
copies, one for each element. In this case, our in-place algorithm saves 2 memory-to-memory
copies, because elements Ag and Aj are already in the right place and do not need to be
copied. This observation holds for all cases. For example, a 5x3 array has two length-6 cycles,
and requires 12 memory-to-memory copies. There are 3 length-1 cycles, i.e., 3 elements are
already in the right places. The two-array method would require 15 memory-to-memory

copies.

On cache-based processor architectures, the memory access pattern is as important as the
number of memory access. It may appear that our vacancy tracking algorithm has an access
pattern more random than the regular access pattern in the two-array method. However,
two points should be noted: (a) for the type of memory-bound problems that this algorithm
is targeted for, the number of bytes in each move is often large; as long as this is larger than a
cache-line size, which is typically about 64 - 128 bytes long (64-byte long on CRAY T3E and
128-byte long on IBM SP), memory access in vacancy tracking algorithm is not irregular at
scales relevant to cache performance; (b) the write access in the two-array B < A reshuffle
phase [see code segment (C.1)] has a large stride. Thus its write memory access efficiency
is about the same as the vacancy tracking algorithm. None of them can take advantage of
the efficient unit-stride writes provided in some processor architectures if the element size is
small. [On T3E, the write-buffer is 32-byte long. Element size equal or larger than this will

have efficient write access.]

2.4 Performance.

The in-place index reshuffle algorithm is implemented using Fortran 90. We report timing

results on two widely used high performance computer systems, the Cray T3E and the
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IBM SP. The tests are for reshuffle index ks, ks in 3D array A(Ni, N2, N3). The vacancy
tracking cycles are pre-calculated and stored to reduce the overhead for both forward and
inverse remapping, as explained above. Since the conventional two-array reshuffle method as
outlined in code segment (C.1) is widely used in practice, its performance is also measured

and serves as the baseline to judge the new in-place algorithm.
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Figure 3: Timing for local 3D array index reshuffle on CRAY T3E. Plotted are the ratio
of timings between the in-place algorithm and the two-array method (including B < A

reshuffle phase only for 3 upper curves, and including both B < A and A < B phases for

the bottom curve).

In Figure 3, we plotted the timing of reshuffling 3D double precision arrays with sizes NV
x 100 x 50, N x 100 x 25, and N x 50 x 50, as a function of N on a single processor
of CRAY T3E. The ratios between the timing of the in-place algorithm and that of the

two-array method are shown.

For N = 1, the in-place algorithm is about 6 times slower than the two-array method.
This is partly due to the overhead for the extra loop in implementing the vacancy tracking

cycles, but probably mainly due to the inefficient memory access. This overhead quickly
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becomes negligible as the element size N increase to about 8. On T3E, memory access is
through cache lines of 64-byte long, which is 8 double precision numbers. This indicates
that the vacancy tracking algorithm has the same efficient memory access as the two-array
method does when the element size reaches the cache-line size. As N further increases, the
in-place algorithm typically outperform the two-array method B < A reshuffle phase for

about 5-10% because of reduced memory access.

The bottom curve is the timing when both B <= A and A < B phases are included in
the two-array reshuffle method. It behaves similarly as N increases and reaches about 0.5

for large N.

Array size N x 50 x 50 seems to perform the least efficiently for in-place algorithm; NV
x 100 x 25 1is better and N x 100 x 50 is the best. This is because the number of vacancy
tracking cycles varies significantly: they are 1225, 42, and 14 respectively. The less cycles,

the less overhead in the algorithm.

In Figure 4, we plotted the similar timing of array N x 100 x 50 on a single processor
of IBM SP. The curves are similar to those on T3E, with a few clear differences. At small
N, the overhead of the in-place algorithm is about 50%, much smaller than 400-500% on
T3E. On the SP Power 3 processor, cache lines are 128-byte long, so the in-place algorithm
reaches the break even points at about N = 16 for REAL*8. For REAL*4, the overhead
is always bigger than that of the REAL*8 data type. (On T3E we did not test REAL*4
because T3E has REAL*8 only.)

A note on compiler options. On SP, the timing is very sensitive to optimization levels.
The two-array codes C.1 performs poorly at the default O2 level, and doubles its performance
when compiled at the highest O5 level. The in-place algorithm C.2 performs relatively well
at 02, and gains much less performance at O5. All timings here are done at 05, otherwise
the timing is much more favorable to the in-place algorithm. On CRAY T3E, both codes
perform well at the default O2 and the highest O3 levels; we use O3. Another subtle timing
issue is the A <= B copyback phase. Implemented in explicit indexing or array syntax (A=B)
in F90, the timing is typically the same as in the B <= A reshuffle phase. To achieve higher
performance, we implemented it using the BLAS DCOPY routine; with this, the copyback
is typically 30% faster than the B < A reshuflle phase.

3 A Multi-thread Parallelization for SMP Architec-

tures

The vacancy tracking algorithm can be easily parallelized using a multi-threaded approach

in a shared-memory multi-processor environment to speed up data reshuffles, e.g., to re-
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Figure 4: Timing for a local 3D array index reshuffle on IBM SP. Plotted are the ratio of
timing between the in-place algorithm and the two-array method (including B < A reshuffle
phase only in two upper curves; and including both B <= A and A <= B phases in the bottom
curve). The array size is N x 100 x 50, with both REAL*4 and REAL*8 data types.

organize a database on a SMP server. As discussed in detail in the correctness proof, the
vacancy tracking cycles are non-overlapping. If we assign a thread to each vacancy tracking

cycle, they can proceed independently and simultaneously.

The cycle generation code (C.2) runs first in the initialization phase before the actual data
reshuffle, to determine the number of independent vacancy tracking cycles and associated
cycle lengths and starting locations. These cycle information can be stored in a table, each
cycle entry with a starting location offset and cycle length. The starting offset uniquely

determines the cycle, and the cycle length determines the work-load.

In a static multi-thread implementation, with a given fixed number of threads, an opti-
mization is needed to assign nearly same work-load to each thread. After this assignment,

the data reshuffle can be carried out as a regular multi-threaded job.

In a dynamic multi-thread implementation, the next available thread picks up the next
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independent cycle from the cycle information table and completes the cycle. How to choose
the next independent cycle among the remaining cycles in order to minimize the total runtime
is a scheduling optimization. For example, a simple and effective method is to choose the

task with largest load among the remaining tasks on the queue.

Further study of the multi-thread implementation on SMP architectures is important,
but goes beyond the scope of this paper. (We also note that traditional two-array method
can also parallelized using similar multi-thread approach.) Our original motivation is an in-
place global remapping algorithm on distributed memory architecture, which we will discuss

in the next section.

4 A Parallel Implementation on Distributed-memory

Architectures

Index reshuffle of a global multidimensional array on a multi-processor distributed-memory
system is, in essence, a remapping of problem subdomains. It involves local array index
reshuffles and global data exchanges. The goal is to remap 3D array on processors such
that data points along a particular dimension is entirely locally available on the processor,
and that the data access along this dimension corresponds to the fastest running storage
index, just as in the usual array reshuffle. As discussed in the introduction, normally the
remapping will require an auxiliary array of the same size as the original data, due to the local
index reshuffle of 3D arrays of non-equal dimension sizes. With the new in-place algorithm
discussed above, the auxiliary array can be eliminated and we have an in-place parallel array

remapping algorithm.

As shown in Figure 1, the essential remapping involves the last two dimensions of the 3D
array A(Np, N2, N3). All data along the first dimension (latitude in Figure 1) are entirely
local to a processor. They are moved around during the dynamical remapping as a single

block. Thus this block may be viewed as an array element of a 2D array.

In this context, the remapping algorithm of a 3D array adopts the well-known commu-
nication algorithm of transposition of 2D arrays on distributed memory environments (see
[8] and many papers referred there). Our main task here is to integrate the local in-place
reshuffle algorithm to make the global remapping algorithm in-place; in doing so, we provide

a concrete and efficient implementation.
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4.1 Algorithm

Here we outline the in-place parallel remapping algorithm for a 3D array. Start with 3D
array A(Ni, Ny, N3). Note that in the situation shown in Figure 1, processors 0,1,2,3 form
an independent reshuffle group. The sizes here refer to the volume of data on these four
processors. (Similar reshuffle also happens on processors 4,5,6,7 as another independent

reshuffle processor group.)

In the beginning, the 3rd array dimension (longitude) are split among all P processors,
i.e., on each processor, the local array (subdomain) is A(Ny, N2, N3/ P). The following simple

steps will accomplish the remapping:

(G1) Do in-place two-index array reshuffle on the local array A(Ny, N2, N3/ P), between 2nd

and 3rd indices.
(G2) Do global all-to-all exchange of data blocks, each of size Ni(N3/P)(Nz/P).

(G3) Do in-place two-index array reshuffle between 2nd and 3rd indexes on the local array
which is viewed as A(Ny N3/ P, Ny/ P, P). The final local array is A(N1 N5/ P, P, N3/ P),
which can be equivalently viewed as A(Ny, N3, No/P).

In both steps (G1) and (G3), the algorithm in the previous section can be adopted without
modification. In traditional implementation [8], the relevant small blocks are picked from A
and inserted into the auxiliary array B in a more elaborate fashion; after step (G2), they
are put back from B to A in an similar fashion. Our index reshuffle method simplifies these
procedures. In case there is enough memory space for the auxiliary array B, this method is
then a simplified version of the traditional method. In that case, the copy-back phase is not
necessary: step (G1) moves data from A to B and step (G3) moves data from B back to A.

In step (G2), the global exchange does essentially a pair-wise block exchange where
the local 3D arrays on each processor are viewed as an 1D array of blocks. This exchange
involves all-to-all communications. Each processor sends P —1 blocks out, each to a different
processor. Each processor also receives P — 1 blocks, each from a different processor. The

relevant code segment is well-known [9, 10, 7, 3, 8]:

! A1l processors simultaneously do the following:

doq =1, P-1
send a message to destination processor destID (C.3)
receive a message from source processor srclD

end do
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There are two popular methods to determine destID and srcID. One method is to set destID
= srcID = (myID XOR q), here myID is the processor id, and XOR is the bit-wise exclusive
OR operation. This is a pair-wise symmetric exchange communication. As q increases each
step of the way, destID traverses over all other processors much like the hypercube broadcast
tree algorithm [11]. On hypercube network, this algorithm is congestion free, and on the 3D
mesh such as Cray T3E, it is also very effective. This algorithm needs to be slightly modified
when P is not a power of 2. Another method is to set destID = MOD(myID+q, P),and srcID
= MOD(myID-q, P). Here, P is not required to be power of 2. These send/receives can be
implemented with MPI_sendrecv, requiring a buffer of size Ni(N3/P)(Nz/P).

The inverse array remapping follows the identical steps (G1), (G2), G3), except the
starting array size is A(Ny, N3, N3/ P). As explained in section 2, the vacancy tracking
cycles in the inverse remapping will be exactly the inverse of the forward remapping. Thus
in actual implementation, we make use of the existing cycles, and traverse in reversed order
in (G1) and (G3), as discussed in previous sections. Step (G2) remains identical in inverse

remapping.

The above algorithm assumes that N, and N3 are integer multiples of P for optimal
efficiency. In actual implementation, Ny and N3 can be arbitrary, giving much more flexibility
on size considerations. When one of Ny, N3 is not multiples of P | the algorithm remains
same, except that some holes in the final remapped array should be squeezed out. When
both of N,, N3 are not multiples of P , some padding is needed before the remapping and

the holes need to be squeezed out after the remapping.

In the situation shown in Figure 1, processors 0,1,2,3 form an independent exchange
group; Processors 4,5.6,7 form another independent communication group. Using the com-
municator or processor group constructs provided in MPI, the above algorithm can be applied
without any change, except that the dimension sizes and P refer to the array and processors
in the processor group. Within each group, processors are still ranked from 0 to P — 1,
and the code segment (C.3) remains valid. MPI communicators will automatically distin-
guish different processor groups and send/receive messages to/from appropriate processors

correctly.

4.2 Performance

This in-place parallel array remapping algorithm is implemented using Message Passing
Interface (MPI) on Cray T3E and IBM SP. The implementation deals with the remapping
indicated in Figure 1, with all processors participating in the single reshuffle group. The
code is extracted from an ocean model parallel I/O module [5]. We fix the 3D array size to

be 64 x 512 x 128. (Several array sizes are tested and the timing ratio are similar. This
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Figure 5: Timing for global array 64x512x128 remapping on 1, 2, 4, 8, 16, 32 and 64 nodes of
Cray T3E using the in-place algorithm. Plotted are the ratio of the timing on P processors
vs the timing on 1 processor. Both total time and communication time are shown. The

two-array method on single processor is shown as the horizontal line.

size is chosen because it fits in the memory of a single processor.) This array is remapped

between the two different decompositions as shown in Figure 1.

Timing for remapping on CRAY T3E is shown in Figure 5. Here the timing is the ratio
between the remapping time on P processors and the time to reshuffle the array on one
processor in which steps G2 and G3 drop out. On two processors, the global remapping
is about 20% slower compared to reshuffling the entire 3D array locally. As the number of
processors increases, the global remapping becomes faster and faster. On 64 processors, the

global remapping is 12.3 times faster than reshuffling the entire 3D array locally.

The main reason for the reduced time on P processors is that the local array size in the
local reshuffle is Ny Ny N3/ P, which is reduced by half as P is doubled, and so does local
reshuffle time. This can be seen clearly from the actual timing, the difference between the

total time and the communication time curves in Figure 5.

Communication time can be approximately calculated from a simple latency + message-

size/bandwidth model. Assuming there are enough communication channels, and no traffic
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congestion on the network, every processor will spend the same time interval for the global
exchange. Adding the local reshuffle time, we have the total global remapping time 7 on

P processors:
Tp =2MNyNyN5/P 4+ 2L(P — 1) + [2N; N3Ny /BP][(P — 1)/ P] (5)

where M is the average memory access time per element, L is the communication latency

including both hardware and software overheads, and B is the point-to-point communication

bandwidth.

Typically, the latency term is very small, thus the communication time (7comm ) decreases
steadily as number of processors increases, as seen in Figure 5. However, T,.onm decreases
much slower than Eq.5 would have predicted, due to two factors: number of communication

channels and traffic congestion as more processors are involved.

Consider communication channels. In this all-to-all communication, the average case
analysis is best described by bisection bandwidth, Bpisec, the maximum bandwidth across a
minimum bisection of the network[12]. In Eq.5 it is essentially assumed to be Bpisec = BP.

For d-dimensional mesh topology, the 3D Torus on T3E, Bpisec = BP*V/? For large P,

this difference in exponent of P makes a big difference in scaling.

As P increases further, the latency term becomes important. Eventually, a saturation
point, Py, will be reached beyond that more processors will not reduce the total remapping

time. From Eq.5, we have

b (A1 NN 4/(2d4-1) n
sat — d LB

for large P . Py, depends on two fundamental characteristic quantities: LB, communication
bandwidth times communication latency, and d, the dimension of the network topology. For
T3E, we measured L = 17usec and B = 300 MBytes/sec. Thus for array A(64,512,128),

Pt = 139, consistent with Figure 5. In general, traffic congestion on T3E is small.

In Figure 6, timings for IBM SP are shown. The total time and communication time
behave similar to those on T3E, but with a few clear differences. First, the communication
time, relative to local reshuffle time, is much large on SP than on T3E. SP has faster local
memory bandwidth, but slower communication bandwidth. Second, the saturation point is
much smaller: P, = 32. On SP, the network is a multi-stage fat-tree topology, which has a
large bisection bandwidth: By = BP, leading to

Poay ~ (NyNyNs/LB)Y? (7)

Using our measured parameters for SP, L = 26usec and B = 133 MBytes/sec, we get the
theoretical Py, = 98. The large discrepancy between the theoretical calculated Py, and the
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Figure 6: Timing for global array 64x512x128 remapping on 1, 2, 4, 8, 16, 32 and 64
processors of IBM SP using the in-place algorithm. Plotted are the ratio of timings on P
processors vs that on 1 processor. Both total time and communication time are shown.
The two-array method on a single processor is shown as the horizontal line. Each SP node
has 2 POWERS processors. MPtasks=1 indicates only 1 processor on each node is used;

MPtasks=2 indicates both processors on a node are used.

actually measured P, indicates non-negligible traffic congestion and other communication

factors with large number of nodes.

On SP, with current 2-way SMP nodes, traffic between the two processors on the same
SMP node negatively affects the communication. For example, the same communication
task on 32 nodes with only one processor per node used (indicated as MPtasks=1 in Figure
6) takes about half time as the same communication task between on 16 nodes with both two
processors used (MPtasks=2 in Figure 6). (The improvement due to MP_MEMORY _SHARED=yes
is included in the timing). This indicates that serially accessing the adaptor on the switch
chip by the two processors on the same node are serialized, and is a serious bottleneck
in communication. We note that all these results are consistent with accumulated general

experiences on IBM SP.
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5 Conclusions

We have described a new in-place multi-dimensional array index reshuffle algorithm following
vacancy tracking cycles. This eliminates the need for auxiliary buffer arrays, and related
copy-backs. Compared to the conventional method, this algorithm saves half of the total
memory required for the reshuffle. Detailed implementation are given and its correctness is

proved.

Although the vacancy tracking cycles seem to have a random memory access pattern, as
the array element size reaches the cache line size, its disadvantages in memory access be-
comes insignificant compared to the conventional two-array reshuffle method. The minimum
memory access property of the vacancy tracking algorithm becomes important for large ele-
ment size and the algorithm runs slightly faster than the conventional method. If the time
required for copying reshuffled data back to the original array is included in timing, the new
in-place algorithm outperforms the conventional one by almost a factor of 2 for large element
sizes. The algorithm have been implemented and tested on CRAY T3E and IBM SP and its

effectiveness were shown.

Using the mutual independence of the vacancy tracking cycles, the algorithm can be par-
allelized on SMP architectures using a multi-threaded approach. On DMP architectures, the
local vacancy tracking algorithm can be combined with an existing global exchange method
leading to an efficient in-place global index reshuffle algorithm, for remapping problem sub-
domains. We described the global remapping algorithm, discussed some points in implemen-
tation, and carried out systematic tests on CRAY T3E and IBM SP. Parallel performances

are analyzed and some useful observations are discussed.

This algorithm eliminates an important memory limitation in reshuffle/remapping of mul-
tidimensional arrays on sequential, SMP and DMP computer architectures while improving
performance at same time. In addition, we believe the algorithm will have other applica-
tions in which storage is a serious consideration, such as out-of-core methods and database

reorganizations.
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